Лауреат премии швейцарского научного издательства рассказал о современном уровне царицы наук в мире
Надо отметить, что конкурс Mathematics 2021 Best Paper Award проводился еще в 2021 году, но награда, как говорится, нашла героя только в 2023-м, – организаторы больше года считали количество откликов и цитирований. Работа, принесшая победу, называется «Неявные уединенные волны для одного из обобщенных нелинейных уравнений Шредингера».
- Николай Алексеевич, чем интересна проблема, которой посвящена ваша работа? Для каких областей науки решение, предлагаемое вами в статье, может иметь значение?
- В последние несколько лет мои научные интересы сместились в направлении теоретического исследования нелинейных математических моделей, имеющих решения в виде солитонов. Солитон – очень интересный объект, который интенсивно изучается в последние десятилетия во всем мире. Это уединенная волна, напоминающая по своему поведению частицу. Она интересна тем, что сама по себе может быть носителем информации. Привлекательность этого явления состоит в том, что солитоны распространяются в нелинейной среде без изменения своей формы и скорости. Единственным их изменением может быть сдвиг фазы при взаимодействии с другими возмущениями.
Оказалось, и в настоящее время это подтверждено многочисленными публикациями, что подобные явления встречаются практически во всех областях, изучаемых современной физикой. В частности, они используются в оптике при передаче информации по оптическим линиям связи. В моей статье, опубликованной в 2021 году в журнале «Mathematics», рассматривается новая математическая модель, которую можно представить как новый тип оптических солитонов, выражающихся через неявные функции. Такие солитоны резонно было назвать неявными. То что, что статья была названа лучшей из всего списка статей года (а их было около 2000), и получила первую премию, было для меня событием неожиданным. Я ничего не предпринимал для этого, статью никак не продвигал, и узнал об этом в апреле этого года из письма редактора журнала.
Научная работа вообще занимает одно из главных мест в моей жизни, еще со школьных лет мне нравилось решать математические задачи: получать пусть и не самые важные и весомые, но ранее неизвестные результаты, всегда интересно и увлекательно. Желание узнать что-то новое неизменно было мощной мотивацией для меня.
- Российских математиков, которые сегодня получают международное признание, не так много. Можно ли говорить о снижении уровня и престижа отечественной математической науки? Есть ли сегодня ученые уровня крупнейшего математика XX века Андрея Колмогорова?
– Нет сомнений в том, что уровень и престиж отечественной математической науки снижается, кстати, как и уровень других наук. Это, по-видимому, относится и к уровню науки во всем мире. К сожалению, даже в ведущих вузах в последние годы появляются (к счастью, пока редко) необучаемые студенты, неспособные понимать язык математики. Имеется целый ряд причин для такого снижения, о которых можно долго рассуждать, это довольно обширная тема. Могу сказать лишь, что МИФИ образца 1960-70-х годов прошлого столетия был одним из лучших университетов мира, сравнимых разве что с Гарвардом, Оксфордом и Кембриджем того времени. Впрочем, это вполне относится и к МФТИ, и к МГУ. Сейчас ситуация выглядит гораздо скромнее.
Вообще, надо сказать, что советская фундаментальная наука была одной из лучших в мире, и, если бы Нобелевская премия не была политизирована, то наших лауреатов было бы гораздо больше.
Есть ли сегодня ученые уровня Колмогорова? Андрей Колмогоров был гениальным ученым ХХ столетия, как и Леонард Эйлер – гением XVIII века. Трудно назвать кого-то, кто мог бы сравниться с ними, да и «большое видится на расстоянии». Уверен, что хорошие математики в России есть и в настоящее время, в том числе и среди молодежи – потому что фундаментальность, как важная составляющая университетского математического образования в России, пока сохраняется. Советское университетское математическое образование давало своим выпускникам высокий математический уровень, высокую математическую культуру: они знали связь между различными разделами математики, владели фундаментальными знаниями, методами и, как теперь говорят, компетенциями. Как рецензент многих международных журналов, я постоянно сталкиваюсь с отсутствием этой культуры у очень многих зарубежных ученых. Сегодня многие из них, например, даже не понимают таких мелочей, что гиперболический тангенс и котангенс, как решения дифференциальных уравнений – это одно и то же решение. Не осознают они и многие другие особенности теории дифференциальных уравнений, например, фундаментальные понятия существования и единственности. Одна из причин этого – подмена формальной компьютеризацией настоящей математической культуры, основанной на знании математики и ее понимании. К счастью, в современной России, как мне кажется, мы пока еще до этого не дошли.
Нет комментариев